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ABSTRACT 

We apply the recently developed technique of Ward Takahashi 

identities for proper vertices in gauge theories to the problem of 

renormalization of electrodynamics - as a simple example of a gauge 

theory - when the gauge condition chosen is bilinear in fields. We show 

that spinor electrodynamics is renormalizable when the gauge condition is 

f(A) = -$- ~ (a Ap - +5A2) = 0 where 5 and a are real and arbitrary; and 

parameter 5 is renormalized independently. We also show that scalar 

electrodynamics is renormalizable with the gauge condition 

f[A] +(8pA’L-~~AZ - tn$*$) = 0 where 5 and r) are real and 

arbitrary. 5 and n must be renormalized independently. 

e Operated by Universities Research Association Inc. Under Contract with the United States Atomic Energy Commission 
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I. INTRODUCTION 

Renormalization of gauge theories (broken and spontaneously 

broken) has been discussed at length over past few years. The earlier 

discussions on the renormalization of gauge theories have been based 

on the Ward-Takahashi (WT) identities for Green’s 
1 

functions. Recently, 

renormalization of gauge theories has been discussed using the Ward- 

Takahashi identity for P [a], the generating functional of the one particle 

irreducible (proper) vertices2 Since renormalization procedure is stated 

in terms of proper vertices, use of the Ward-Takahashi identity for 

l? [ EJ] simplifies the discussion of renormalizability greatly. Above 

discussions on renormalizability of gauge theories have been carried 

out in which the gauge conditions chosen to quantize the theory are linear 

in fields. It is of some interest to see whether the proof of renormalizability 

goes through when the gauge condition chosen is bilinear in fields. 5 (That 

is how far one can go if the gauge term is not to exceed dimensions four. ) 

Here, we apply the method of Ref. 2, viz. the Ward-Takahashi 

identity for r[ @] in order to carry out the renormalization of the simplest 

possible gauge theory. We work out the renormalization of electromagnetic 

field interacting with a Dirac field or a complex scalar field. It is hoped 

that this exercise will help understand the renormalization of more 

complicated (e. g. , non-abelian)gauge theories in bilinear gauge conditions. 

In Sec. II, we begin considering the Lagrangian for free 
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electromagnetic field with the gauge condition f [ A]- i [ i3 
P t* 

Ap-$cAKAp] 

=o, with 5 and (Y as free parameters. Though the theory is trivial 

from the point of view its physical content (S-matrix), it is non-trivial 

from the point of view of renormalization. In fact the renormalization 

of free electromagnetic field makes it considerably simpler to treat the 

interacting cases in this type of gauge. We note that, in this gauge 

(c# 0). there are (Ap)3, (AJ4 and (%A ) vertices. ( ?., c are the Faddeev- 
P 

Popov ghost fields. 3, We obtain the Ward-Takahashi identity for proper 

vertices. We use the dimensional regularization. We analyze the 

divergences in G-t [ a] (the generating functional of proper vertices with 

two external ghosts.) and in <[a] which is essentially the expectation 

value of the gauge functional in presence of external sources. Using 

WT identity for F[ a] , we obtain relations among the divergences in 

r [ @I > G-i[ @] and z[ a] and show by an inductive proof that they 

can be removed by multiplicative renormalization on fields and parameters 

cy and 5 . (We shall not state any specific renormalization conditions 

which determine the finite parts of renormalization constants. ) 

In Sec. III, we give results of one loop calculation to carry out 

the renormalization program of Sec. II and varify the relations among 

the divergences obtained there. 

In Sec. IV, we show that the 4-photon S-matrix amplitude vanishes 

in this gauge, as it should. 
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In Sec. V, we consider spinor electrodynamics. The extension 

from non-interacting case is, more or less, straightforward. We prove 

the renormalizability of spinor electrodynamics and obtain the usual Ward 

identity between the renormalizations of electron photon vertex and 

electron propagator. 

In Sec. VI, we consider scalar electrodynamics. We find that in 

the gauge f [ A] E-$ (apA’ - iSA’) = 0 , we cannot make proper vertices 

finite by multiplicative renormalizations on (Y and < (and fields, etc. ). 

This is essentially because, in this case, F[ @] is such that its cl 

derivatives cannot be made finite to all orders by multiplicative 

renormalizations on (Y and 5 (and fields, etc.). We however find that 

if we choose the gauge condition f[ A] Z- i (aAC” 
P p 

- f CA2 - &?$) = 0 , 

and renormalize (Y, 5 and n independently, the renormalization program 

goes through. This is explained in Sec., VI. 

It is found that renormalization of g(or E and ti is (are) independent 

of those of other parameters and fields. From practical point of view, 

such gauges would have been more useful were the renormalizations on 

5 and n dependent on other renormalization constants, for then, 

certain simplications in the effective action could be made and maintained 

to all orders. 
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(11-i) Prelimary 

In the following, we consider the Lagrangian for the electromagnetic 

field A (x) , 
i* 

q=-+F j+” 
)*v 

where, 

F 3aA -aA . 
PV P” VII 

L?’ is mvariant under a local gauge transformation, 

Ap(X) - Ap(X) - $ apU (X) . 

We shall choose the nonlinear gauge function, 

f [ A] = +$ ‘actA’ - ;upA’) . 

Then the gauge term, to be added to q, is given by, 

(1) 

(2) 

9 gauge = 
-+( f[A]i2 . 

Henceforth, we shall use a summation - integration convention 

(used, for example in Ref. 2). Thus, the gauge functional of Eq.( 2)is, 

f,[ A] = + -!- ($A. - +5yjAiAj) $7 11 

[ c 5 a 6 4tx -X ) $ 5 5. 6 4(~a-xi) 6 4(~i-xj) etc. ] . 
1 II Qi 

As shown by Faddeev and POPOV,~ the Feynman rules for 

constructing Green’s functions can be deduced from the effective 

Lagrangian, 

qff[ A, c, E 1 = q+qauge + ErrMap cp . (4) 

(3) 
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Where, E and c 
cr P 

are fictitious, anticommuting complex 

scalar fields which generate the Faddeev -Popov ghost loops, and M 
4 

is given by, 

= aip(aia- 5. Aj . 

We note that there are (A1,)3 and (A?4 vertices arising out of the 

gauge term and a EcA 
P 

vertex from the ghost term. These Feynman 

rules are given in Fig. 1. (The dotted lines denote the ghost lines, the 

wiggly lines denote photons. ) 

(H-2) Ward-Takahashi Identity for Proper Vertices 

We shall deal with unrenormalized, but dimensionally regularized 

quantities (in dimensions 4-e). We shall use the notation of Ref. 2. 

The generating functional of Green’s functions is given by, 

WF[ J] = j[ dAdcdE ] \ zff[ A, c, C ] + JiAij . (6) 

As a result of gauge invariance, WF[ J] satisfies the WT identity‘; 

which to our specific case, reads 

1 f -- L1 ,[$+I + Ji+M,:[t$jiWF[ J1 = 0 . 
d- 

(7) 

Z[ J] , the generating functional of connected Green’s functions 

is defined by, 

W,[J] =expiZ[J] . 
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We define, 

@,= bZ[Jl 
1 dJi ’ 

Then the functional I[ Q] defined by, 

I-[ C’] = Z[ J] -J,@. I 1 

generates the proper vertices. 

It follows from Eq. (9), 

(8) 

(9) 

We go back to the WT identity of Eq. (7) and use the operator 

identity: 

B,LL eiZ[ Jl = eiZ[ Jl 
i 1 i 65. 

B[@+;&] 

and thus obtain, 

+-[Q++-& i+,pJiM,;[Q++A. t=O . (11) 

Now, 

6 6 a. 
-= d-6- 6 -- 
6 Ji bJi6Qj- -AijPl ““J . 

It can be shown that Aij [ @] is the propagator when fields Ai 

are constrained to have expectation values a. . 1 
Then using Eq. (IO), 

Eq. (ii) becomes, 

-lf Q+iAd 
J (Y a C 6Q 1 

where, 

(12) 

Gpa[ Q]E M-i 
P 

@+iAL ‘1 
6rn I 

, and can be shown to be the 
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generating functional of proper vertices with two external ghost lines. 

Now, 

&f, @+ iA& ‘1 
[ 1 

a 
= ai 1 E 6 Qi+ iA.. - ” 1 

‘j 6 “j 
I 

- $cyj [TJ~ + iAik hk] [aj + iAja &I Ii 
= < Qi - +5yj (Cy5j + ‘Aij) 1 1 . 

Thus we obtain the WT identity for proper vertices: 

G frn]a~~=-L . (13) 
PQ CT I 

a: ai - + gyj (aiQj + iAij [ @I) 

(11-3) Expression for G,t[ @I 

G,:[ @I is the generating functional of the proper vertices with 

two ghost fields at cz and y . In order to carry through the renormalization 

program, we need to show that the renormalized G -? Ql is a finite 

functional. Hence we need, first, to obtain an expression for G 

We have the identity: 

MaG[@+ iA&]Mii[@+ iAA. 1 = hap 

Using definitions of M 
“Y 

[Eq. (3)] and Gvp [ Eq. (12)l ; 

aj + iAjkkj]a;Cyp[@l = brrp . 

Using, 

& GyP[ @I = -Gy5 
k 
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we obtain, 
-1 

=f@.a?A. G SG 
‘J J 1 jk ~5 6ak 

I 
yp = ‘Lyp . 

Hence, 
-1 

6G5Y 
Gii[ @I = 8qa~-$aja~+ icyja”AjkGng y (14) 

k 

A dagrammatic representation for the last term is given in Fig. 2. 

(11-4) Renormalization Transformations 

To prove renormalizability of the theory, we have to show that the 

derivatives of F[ @] about its minimum can be rendered finite as E + 0 , 

by rescali~-ug fields and parameters appearing in the Lagrangian 

~effPs>~ 1. We therefore define renormalized parameters and 

fields by the following renormalization transformations: 

c = zic(r) a = ;$ ,p 

-=w 1 1 -- 
a z @b-) 

We also define: 

Gap[@] = ZG$+8] , ~[‘D,LY,~] = F(r+dr),@(r),$r$ . 

In the following, we shall always express everything in terms of 

renormalized quantities and drop the superscript (r) Thus the 

expression for (renormalized) G i: [ @pl becomes, (from Eq. (14)): 

G,:[ @] = I (15) 
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While the WT identity of Eq. (13) becomes, 

G 
pa 

a! 6r- lw a~,,-YP,~,~.-‘Y -_ .._- 
1 6 a, 11 1 @y”z I 2z ‘J ‘J 22 

+3p] . (46) 

To carry through the renormalization program, we start with the 

unperturbed Lagrangian expressed in renormalized fields, 

v!!$= -$F 
ILY 

F’” -&3PAP)2 

and expand the proper vertices in terms of the loops the Feynman diagram 

contains. In each loop approximation we must determine the renormalization 

constants by a given prescription. 

In the following, it will be assumed that renormalization constants 

Z, 2, W, Y are determined up to (n-1) loop approximation and that these 

make Git [@I , r [ @] and z[ @] (defined in Eq. (16)) finite to each 

order, up to (n-i) loop approximation, in perturbation theory. We write, 

up to (n-1) loop approximation: 

Z(E) = 1 + ~~(-5) + z2(c) + . . . + znml(c), etc., etc. 

Then we shall show that an appropriate choice of zn, zn, yn, wn can be 

made as to make Ga:[Q], r [ @] and 3 @] finite up to n loop 

approximation. 

(X-5) Analysis of Divergences in G anda @I 

In order to show that Gi:[ @] ands @] can be made finite by 
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appropriate choice of the renormalization constants in n-loop approximation, 

we must show that various derivatives of G $I @I and z[ @] at 

Q = 0 (the minimum) in the n-loop approximation have received all the 

internal subtractions (the meaning of this statement will be clear soon. ), 

so that the divergences in these (those which are renormalization parts) 

are polynomials in external momenta and therefore that these can be 

removed by the local counter terms provided by the appropriate choices 

of the renormalization parameters. 

We note from Fig. 1 that the Feynman rule at the 5cA vertex is 
P 

proportional to the momentum of the incoming ghost; so that in any 

proper vertex with two ghost lines, there is a factor of p for the 
P 

incoming ghost of momentum p . This effectively decreases-Ihe degree 

of divergence (D) by one. Therefore, G-*[ a] 
I 

and 
6GJ @I 

aY a= 0 ’ ‘k I m=o 

are renormalization parts but higher derivatives of G are not 

renormalization parts. Also only the first two derivatives of y[ @] 
(Y 

at @ = 0 are renormalization parts. 

(A) We begin by considering “;l @I in n-loop approximation. 
Q=O 

We write this down in momentum space as Feynman Diagrams. [ See 

Fig. (3)] . 

Consider [xll, i.e., 2 in n-loop approximation. The shaded 

blobs in [.I 
n 

contain at most (n-l) loops and the counter terms introduced 

up to (n-i) loop approximation provide the necessary subtractions for 
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the subdiagrams in the blobs making them finite by our hypothesis. 

However [Z] n needs further subtractions for the renormalization parts 

which are subdiagrams of [x], and contain the rightmost vertex in [x] n ’ 

From the remark made earlier about the (ZcAP) vertex, such -1 

renormalization parts arise only from two particle cuts in 6GSY - 
6Qk ) 

the leftmost blob in [c]~ . See Fig. 4. 

Thus these renormalization parts needing overall subtractions 

consist of the three point proper vertex 6 G-‘/6 @ to various loop 

approximations [up to (n-l) loops]. We shall show that the overall 

subtraction for such subdiagram is provided by y, . Hence the 

additional internal subtractions needed by [z] %I n consist of r=l Y~(x),-~ . 

Therefore, 

n-l 

own =c Yr(Qnsr 
r=l 

has its divergence a polynomial in momentum. Due to Lorentz 

transformation property and dimensions of G -l(P) * 

(Y.qV = p2K(e) . 

(Here we note that there are no dimensional parameters in %ff ” 
,div 

Therefore by choosing zn = K(E) we can make [G-~(P)], finite. 
6 G-l 

(B) Next, consider ‘YY Cd 6 ~ 
I 

From Eq. (15), 
k @=O * 
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6G 
-1 -1 

Quy A. G 2 

’ ‘k 3m ~5 6@, 
. (17) 

@=O a=0 

We express the Fourier transform of Eq. (17) diagrammatically in Fig. 5. 

As before, we need consider the internal subtractions needed to 

L Yl + Y2 + Y31n for their subdiagrams containing the rightmost vertex 

in each only. It is easy to see that (y,), and (y,), does not have 

subdiagrams which are renormalization parts. (y,), has, however, 

such subdiagrams which arise out of two particle cut in the proper 

(ccA A ) vertex on the left. 
EL ” 

These fall into three catagories shown in 

Fig. 6. 

As before, it is clear that the internal subtractions to (~~+y~+y~)~ 
n-l 

are provided by c ~~(yi+y~+y~)~-~ . Hence, 
y=l 

(Here one must remember that each diagram is proportional to pu.) 

Therefore, 

div 
[ G(3)(~, q, r, p) 1 n = ~~&n(e) + J(c)1 

and can be made finite by appropriate choice of yn(e) . 

(C) Consider divergences in aD] . 

We note, 
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,,I = 3([ App(~Z)l n-ld4q (i9) 

n 

where AllV(q2) is the photon propagator. Since the right hand side must 

have dimens ions (momentum)2 and since there are no dimensional 

quantities in the integral that it can depend on, it must be zero in 

dimensional regularization. 

6.3T 
Next, we consider the divergences in F and 

k 
C=O 

6Qk661 
*Co 

h-9- 
2 
6 “k 

(iA. .) 
‘J 

m=O 
1 *Co 

2 

6$6@l = 
tE,pi 6 ‘3 6 Qkml 

(iA. .) . 
1J 

!Z=O o=o 

(20) 

(21) 

We tabulate these in Fig. 7. 

The constants, A, B, C are defined in each order in perturbation to 

be the overall divergences left in A , o and II 
P” P” 

(They are defined in 

Fig. 7) respectively when all subtractions are performed on their 

subdiagrams which are renormalization parts. Note that we have not 

yet specified how the finite parts of A, B, C (alternately of A , o 
P” ’ 

and II ) are to be defined. For clarity, we note that A , q 
ELvj 

and 
tJv 

II are proper diagrams. The distinction between q and II is 
PV CL” PV 

that when they are opened at the vertex denoted by cross (-%+) , II 
P” 

gives rise to a 4 photon proper vertex while o 
P” 

gives rise to a 

4 photon improper vertex. 1 
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The subtractions needed for subdiagrams in the shaded blobs in 

Mn I [opvln and I IIpvl n (See Fig. 7) are provided by the counter 

terms already introduced in the Lagrangian up to (n-l) loop approximation. 

Thus apart from overall subtraction these need subtractions for the 

renormalization parts which are subdiagrams containing the leftmost 

vertex denoted by a cross (..-x+ . We tabulate these subdiagrams and 

subtractions needed to them in Fig. 8. 

Thus, from Fig. 7 and Fig. 8, it follows that, 

n-l n-l 
(0 I All(p)1 n - El Br[ A,JP)I n-r - + c C, LAP(p)1 n-r - A,P,, 

r=l 

= finite 

which can be written in a condensed form: 

[ A&P)(~-S- ;) - ApJ n = finite . (22) 

(ii) 2[ 0 ] - 2B g = finite 
F*V n n PV 

n-l n-l n-l 

(iii) [ ‘$y] n - + c Cr[ llpyl n-r - c cr[opvl n-r - 2 c Br[opvJnmr 
r=l r=l t-=1 

n-l 
- rsi Br[ IIpv] n-r = finite . 

Adding (ii) and (iii) and writing in a condensed form: 

[ (2?zk” + 5” t IIJ(I-B- $1 n = finite . (23) 
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and, 

Now, 

(24) 

Comparing Eq. (22) with Eq. (24) and Eq. (23) with Eq. (25), it is 

clear that the two derivatives of x[@] can be made finite simultaneously 

if we choose the factors ‘q 
2z 

and w - appropriately [ i. e., equal to 
2 

(l-B- g) and -9 respectively, ] However, since we would like to 

(though it is not necessary) determine the finite parts of W and Y by 

renormalization conditions on derivates of r [a] rather than of a a] , 

we will state it differently. Suppose, we have chosen w r and y, in 

rth loop (I‘< n) approximation by appropriate renormalization conditions 

and if they satisfy, 

= (l-B- ; )r 

r 

05 r-5 n-l 

0 5 r 5 n-l (26) 

then we have to show that w 
n 

and y 
n chosen in nth loop approximation 

will satisfy: 

= (I-B- ;) 
n 
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and hence will make cy 
“i @=O 

finite to n loop approximation. 

Here we note the convention to define the finite parts of A and 
P 

‘20pY pv +I1 ). Once the finite parts of Y,Wand Z are chosen by a 

given set of renormalization prescriptions in r loop approximation, 

Eq. (26) then defines the finite part of (I-B- z )r and hence of 

(2 “p” 
+11 ) . Finite part of Ak(p) r is so defined in 

[ I 
rth 

PV r 
loop 

approximation that WT identity of Eq. (30) below is satisfied by the finite 

parts. 

The higher derivatives of p] are not renormalization parts. 

The proof that they become finite in n-loop approximation once Eq. (26) 

are satisfied proceeds similarly. 

(11-6) Proof of Renormalizability: 

Consider the inverse photon propagator Fc,v(p) . Because of the 

Lorentz transformation property and the fact that there are no dimensional 

parameters in the theory, it follows that, 

FiJP)]Ii” = ( gpyP2 - PIP,, I&) + prpvNe (E) ) . 

Define I’(t) and F(l) by: 

FJP) = 
( 

gpyp2 - P P ~ y 
> 

r(‘lP)+PpP”I.(P ) (P) (28) 
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Then, 

= N$E); r’(p) [ 1 div 
n 

=N’(E) 

We shall choose zn and w n such that Nt(e) and NL (E) respectively 

become finite. As shown earlier, we can choose yn such that 1 1 G -l(P) n 

is finite. Then we have to show that proper choice of y, can be made so 

that the (CCA~).(A~)~ and (Alr)4 vertices become finite and that relations 

of Eq. (27) are satisfied. 

To this end, we consider the WT identity of Eq. (16). We consider 

successive derivatives of this identity at Q=O and equate the quantities 

on both sides in the n-loop approximation. 

(A) Differentiate the WT identity with respect to Qk and set 

m-0. We obtain, 

GP 
(29) (Y 

Writing this in momentum space, using the Fourier transforms 

defined earlier Eqs. (24) and (28) 1 . 

2 (1) 
G(P’)P,,P F ~py+5~Av(~) 

t 
. (30) 

22 

Left hand side of Eq. (30) is finite in n-loop approximation (with 

already chosen ‘Z n and wn), so that 

finite = - ,p + eyw 
I 

W 

z ” 222 
A”(P) , 

t 
n 
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n-l 

= - @)J” - i-E@ [nY(Pl]n-r 

r=O 

n-l 

= - (;)J~ - $~(-~:~vtp)]nmr 

r=O 
by Eq. (7.6) 

by Eq. V-2) 
W = _ j p 0 c 
z ” 

- z Anpy, + finite 

n 

(B) Next, differentiate the WT identity with respect to @k and 

@I and set m-0 . We obtain, 

+ & Gp,)f ,;,2@ + (k-1) 
f k I P 

Let us define: 

F. T. = 

(32) 

(33) 

Then, the left hand side of Eq. (32) has the diagrammatic representation 

shown in Fig. 9. 

Now, 
i 

r(3) 
cuJP. q, r) I tiv must be a polynomial linear in external 

momenta (p+q+r = 0) and a Bose symmetric Lorentz tensor. This implies 

that, 
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= D(E) g r + g 
UP ” 

a”9p+g P * 
II” * f 

(34) 

As shown in Eq. (18), 

c G(3)(p, q; r, ‘I)];ly = pP[bn + Jkl] - a(dPp . 

Similarly, 

1 G(3) (p, q;r,4 tiv= I a(c)p - ” 

Hence Eq. (32), in momentum space, becomes: 

P’ Pq 
gaPr” + g*“qr. f gr”PQ f +; K +; + 

P2 P 

div 
+ 2opv(q, I-) + IIP”(4. + finite 

P”. n 

(35) 

n-l 
= 

( ) 

SCVYdiVg 
-2 

+r 
p” 2cu 

c( I( 

E.Y 2g 
ST2 

+ 20 + II 
1 

+finite 
@Z P” tJ*y P” n-r 

n r=O r 

using Eq. (26), 

n 

(I-B-~)r(2g~y+20~“+II~“) + finite. 
n-r 

using Eq. (23), 

- 5 (l-B-g In gpv + finite . 
P” 

n 

(37) 

Expressing Eq. (37) as a function of p and q , 
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D -(p+qj,Pp + P q Y p + gpyp2 1 - ;PJP+q)” +;P q 
” tJ 

=ip2[@]r- (I-B-fh]g,,+finite. 

Comparing coefficients of p q and gp,,p2 . we obtain, 
P” 

div- (l-&c) 1 2 n + finite . (38) 

n 

But from Eq. (18), a E tin(e) + K,(E) can be made finite with appropriate 

choice of yn(e) . Then D(E) becomes finite and 

(39) 

As remarked earlier, finite part of (l-B- g ) will be defined such 

that 

(~-B& = . 

n 

(40) 

(C) We shall consider, finally, the WT identity differentiated thrice 

with respect to pi, , @I and @ and set @ = 0 . With choices of 
m 

renormalization constants in n-loop approximation already made, all 

vertices entering the equation are made finite except (possibly) the 

(Ap)4 vertex. From this equation it trivially follows that the (Ap)4 

vertex is also finite. Thus all renormalization parts of F[Q] are 

shown to become finite. 



-22- FERMILAB-Pub-74/69-THY 

Thus we have shown that if renormalization constants are chosen 

up to (n-i) loop approximation such that F[@] , GiL [Q] and <[m] 

are finite in the limit E - 0 in loop approximation, then renormalization 

constants z n I zn > wn > Y, can be chosen to make I?[@], Gii[Q] and 

<[a] finite up to n loop approximation. For n= 1, this is trivially 

true if we choose z = ‘Z = w 
0 0 o=yo 

= 1 Hence the proof by induction 

is complete. 

We shall present the results of one loop calculation in Sec. III. 

III. RESULTS OF ONE LOOP CALCULATION 

In this section, we state the results of one loop calculation to varify 

the relations between divergences [See Eq. (27)] in Gik [a] , I?[@] and 

4 
(A) The inverse photon propagator : 

The diagrams of Fig. 10 contribute to the inverse photon propagator 

in one loop approximation. 

We use dimensional regularization to compute these and state the 

divergences in units of 

2 2 z-2--- . 

(W4 E (41) 

Let m(a) denote the diagram of Fig. to(a) evaluated with usual 

Feynman rules; let Div ( m(a) 1 denote the terms in m(a) which have 
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pole in E . 

Di”~~~~f~“dir2[2~2-3~+31 Ip p ) _ i g p2 1 
2CY2 CL” 

- iC21 + gpvp2-p 1 ( p 
P” P” 

Div (m(b) i = icI 1 i(g,,,P”-PPpv ) - i gClvp2 1 

m(c) = m(d) = 0 . 

Therefore, 

Div( i FPv(p) ) = (42) 

Writing Z = l+z , W = l+w etc. to one loop approximation, the 

counter term is: 

-iz 
( 
gpyP2-P p 

CL ” > -; (w-z)ppPy * (43) 

Hence, we find that the following choice will make renormalized 

inverse propagator finite: 
2 

Div(z) = 0 , Div (w) = & 
[ 
2a2-31r+3 I . 3 (44) 

Here, we see that the transverse part is unrenormalized to one 

loop approximation while the longitudinal part is renormalized. 

(B) The Inverse Ghost Propagator: 

Diagrams of Fig. 11 contribute to the inverse ghost propagator. 

We find, 

Div(m(a)} = - i c2(3-~) Ip2 

m(b) = 0 . 

(45) 
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Writing 2 = l+z; the divergence in the inverse ghost propagator 

will be cancelled by the counter term -ip 2% z if we choose, 

. (46) 

(C) The Ghost-Ghost-Photon (EcAC1) Vertex: Diagrams of Fig. 12 

contribute to the proper vertex. It is found that, 

Div{m(a) 1 = i E31pa 

Div(m(b)j = - i E31pa . 

Thus, 

Divfm(a) + m(b) } = (Y E31pcy . (47) 

The counter term is ytp Ly 
. Hence we choose, 

(3-(u)t21 
Div(y) = - 4 . (48) 

Thus far, we have determined the divergent parts of the renormalization 

constants. Now we shall varify the relations between divergent parts of 

A I 0 
P 

9 11 
k" F" 

, rc3) 
ffl*" 

, rc4) 
ff@F" . 

CD’ A k” : 
P 

The diagram for Ap(p) is shown in Fig. 7. It is 

found that, 

35 2 Div(A) = z (cu -&2) I (49) 

Then from Eqs. (49), (46) and (44) we easily varify Eq. [27(ii)] viz: 
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Div(A) = - 2 Div (W-T) 

5 
. (50) 

(E) q ELv(q, r) and IIpv(q, I‘) : These are defined in Fig. 7. Here, 

we obtain: 

Therefore, we can varify Eq. [27(i)], viz: 

-Div(B+ z) = Div(y+w-22) . (52) 

(F) The 4-photon vertex: 

Diagrams of Fig. 13 contribute to the 4-photon vertex r (4) 
@PPV 

The results are, 

4 
Div(m(a) \ = s I A 

P v4 

Div{m(b)\ = -2i’42!@+2)IApvQB 
(Y 

Div (m(c) } = 
-iS4(17+2a+5a2) IA 

4cz 
2 P 4 

Div{m(d) 1 =-$ IA 
PVQP 

where, 

A 
P*vff$ = gpy “(Yp + $K&3 + gppgw . (53) 
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2 
Hence, we can verify that the counter term 

[ 
-i( 2y+w-2’Z) r A 

a PVQP 1 
cancels the divergence in the 4-point vertex. 

(G) 3-photon proper vertex: 

Diagrams of Fig. 14 contribute to the three-photon proper vertex. 

The results are, 

3 
Div{m(c)+m(d) 1 = - 5 I FCIw (54) 

where, 

F 
pvu = ppgvo + qvgpo + r. gpv . 

Then it is easy to verify that the total divergence in the (Ap)3 vertex 

is cancelled by the counterterm: 

- 5 (y+~-?‘)F~~o . 

IV. S-MATRIX 

In this section, we shall show that the renormalized three and four 

photon S-matrix elements vanish. 

First let us note that the polarization vector cy(p) of a physical 

photon (p2=O) of momentum p satisfied p-e=0 . am Z <pIACI(0) ( O> . 
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With the linear gauge condition, apAP= , it immediately follows that 

p.e=o . In our case the gauge condition f,[A] =$ ( apA” 
CY 

- 5ApAp)=0 

means that matrix elements of f,[A] between physical states vanish: 

<p) f@[A]I O>=o . This translates into C’ 
[ 
pCL-aAlr(p) =0 where a is 1 

some constant. Since All(p) =ppA(p) ; it follows that p’ E=O . 
> 

It is easy to see that the three photon amplitude vanishes on mass 

shell. Three photons of momenta p, q, r (with p+q+r=O) can be on mass 

shall only when p=aq=pr for some m and p . Thus there is only one 

independent 4-vector. Any tensor with three Lorentz indices constructed 

out of it vanishes when dotted with polarization vectors. 

Finally, we wish to show that the 4-photon amplitude vanishes on 

mass shell. Since the amplitude is a truncated Green’s function, it is 

easier to use the WT identity for Z[J] , the generating functional of 

the connected Green’s functions. Referring back to Eq. (16), we can 

write the WT identity for Z (r) J(r) [ 1 ; in terms of renormalized quantities 

dropping the superscript (r): ’ 

G&J] $J, - i; 8;s (55) 
1 

Differentiating with respect to Jk, Jp , J 
m 

and setting J=O, 

Li2G 4 
& 8: + (2 permutations of k,1 ,m) -Iw a: 6 ,,,“, f, 6 J 

k m 02 I k m 1 
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+ 

+ iyw g, 6 5z 
2z2 ‘J 6 Ji6 Jj6 Jk6 Jfd Jm ’ (56) 

We show the Fourier transform of theEq(56) in Fig. 15. (A shaded 

box stands for connected truncated Green’s function. ) 

The first term (and its permutations) does not contribute when dotted 

with polarization vectors since it is proportional to s (q r ) 
A p’ Y 

. The first 

term on the right hand side does not contribute because it does not have 

a pole at p2=0 . One can verify that (at least) in one loop calculation 

the last term does not have a pole at p2=0 that would contribute with on 

mass shell photons. Therefore, from Eq. (56) it follows that 

lim Q (4) 

p2, q2, r2, s2+0 

p2q2r2s2&q)e”(r) e’(s)p GopvX(p. q, r. s) 

(57) 

Here G(4’ Ly~vx (p, q, r, s) is a connected 4-photon Green’s function . 

Equation (57) is just the statement of gauge invariance of the T-matrix 

under an arbitrary gauge transformation Ap(x) + Ap(x) - ; apu (x). 

Since an w (x) exists which can change f b,& A(x)] + f [G, c+dc, A (x)] ; 

it follows, in particular, that 
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2 T(4) 
aE [ 

apvX(Pa 9. r, S)~@(pkJl(q)~“(r) E’(S) 1 =o . 
Since we know that T (4) _ 

C?fl”X 
- 0 at 5 = 0 ; Eq. (58) tells us that 

T(4) 
‘ycL “dp. 9, r, s)ECU(p)EEL(q)E”(r)EA(s) = 0 

(58) 

(59) 

V. RENORMALIZATION OF SPINOR ELECTRODYNAMICS 

(V-l) In this section we shall consider a Dirac field(electron) interacting 

with the electromagnetic field quantized with the same gauge condition 

(of Eq. (3)). We shall show that we can remove the divergences in all 

the proper vertices by multiplicative renormalizations on the electron 

field and electric charge e , in addition to the renormalizations done 

in Sec. II, and by choosing a mass counterterm bm . We shall be brief. 

The Lagrangian (in terms of unrenormalized fields and parameters) 

is, 

Hkq,Ar)= - i FpyFpV + $(ifi-e 4-m) + 

9. is invariant under the local gauge transformations, 

AI*(x) - Ap(x’ - i ape (x’; 

G(x) - emiwcx’ G(x) , 3;(x) + eiw (“)+j . 

(60) 

(61) 
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We note that M~,[A] of Eq. (5) is still unchanged and hence 

yeff [+,T; Ap;c, C ]is given by 

~ff[G>%A,jc,~]= [LkkAp]+~aUge + Mom& - (62) 

We note that there are no basic ghost-electron vertices. 

The generating functional of the Green’s functions is now constructed 

by introducing sources (corresponding to fermion fields) no and 
v 

They anticommute among themselves and with the electron field. 

We have, 

W,[J, r), Til = dA d$d$dcdE 1 f exp i <ff(A;c. C , $,T) 
+ JiAi + qirli +Vi+i . (63) 

We define fields F and x , the expectation values of electron 

fields $ and $I by, 

62 
x0=-- 617 CY 

xp=g . (64) 

Define : 

Z[J,ij,n]= -i In W[J,n.fj] . 

We define the generating functional of proper vertices by, 

r[@:x,x] = Z[J,n, V-j- Xf’li - Vixi - J. a. . 1 1 (65) 
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The inverse propagator for the electron field in presence of 

external sources is, 

(66) 

while, the propagator sij is given by, 

(V-2) WT Identities: 

Let us obtain the WT identity for WF Following the 

procedure of Ref. 2 and noting the transformation properties of fields 

(Eq. 61), we obtain the following identity: 

XW FJ,r7,? =O [ 1 

c?. = 64(x 
. '.I 

-X,)64(X -X.) 6 _. 
PI PJ '3 1 

Going through the steps analogous to those of Sec. (II -2). we 

obtain: 

-i,[@+iA&].i +{e ap+eCfj[<(Xjiisjk$--) 
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Thus, the WT identity for generating functional of proper vertices 

r Q,F,x is, c 1 

+ ie gp s 
I 

6 G;; 
- - 

ij jk 6R, Gf3c 6’:. 1 
= _- ’ a? a. - 1 c?. ( @.@.+iAij) 

1 
. (Y 1 I 2 ‘J ‘J 

(69) 

(V-3) Renormalization Transformations: 

In addition to the renormalization transformations defined in 

Sec. (II-4), we define the following renormalizations on fields x, X and 

on electric charge e , 

and 

G 
4 

Q,x,Xw,Le 
1 

= zGt$ [m(r),x(r),R(ri;u(r),~r),e(r~ 

r Qp, x, 2 w, 5, e ] = r(r)[m(r),x(r),~(r);a(P),S(r),e(r)] . 

In the following we shall express everything in terms of 

renormalized quantities and drop the superscript (r) . 

The WT identity of Eq. (69) becomes, 



where, 
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[ 
6 af C ex P 

11P16Qi x 
+c Lij 

i 
Xi$ 

1 
- xj g 

1 ) 
brlp 

+g =-$c 
X 

Krli = ie lP.s. “%tl 
‘J Jk 6x - GP5 k 

. 

(70) 

(71) 

Diagrammatic representation for E is shown in Fig. 17. 

(V-4) Analysis of Divergences in G-’ , ,- , b: x] Kili[m.x.?] >~f+Lx]: 

(A’ G-’ p>xX] : 

Referring back to the discussion of Sec. 11-5(A), (See Fig. 3 and 

Fig. 4), we need only worry about the internal subtractions for 

renormalization parts containing the rightmost vertex in Fig. 3. In 

introducing the fermion fields we do not introduce any such additional 

renormalization parts; since any diagram with two ghost lines and two 

or more fermion lines have superficial degree of divergence D 5 -1 . 

Thus discussion of Sets. 11-5(A) and 11-5(B) goes through 

63 <[@,x,7] : 
Here, too, we do not introduce any new renormalization parts in 

derivatives of5 which contain the leftmost vertex denoted by 
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a cross. (See Figs. 7 and 8.) Here, too, any subdiagram containing 

this vertex and two or more fermion lines has D 5 -1 . Hence, the 

discussion of Sec. 11-5(C) goes through unchanged. Similar discussion, 

as applied to 
62X 

6XibXj 
shows that it becomes finite to n-loop 

m=x=;=o 

approximation once the appropriate choices of renormalization constants 

up to (n-1) loop approximation is made according to Eq. (26). 

(‘2) Kvi %xX,X : 
c I 

We shall show that Kni and Krli become finite to n-loop approximation 

once the proper vertices to (n-i) loop approximation are made finite. It 

is clear that the lowest derivative of Kni which is nonzero at @x=X=0 

6K 
111 is - 

6Xj 
; since ~~~ [0=0=x=x] =0 . The first derivative 

*x=y=o 

is shown in Fig. (18). 

The blobs in Fig. (18) are made finite by renormalization counter- 

terms introduced up to (n-1) loop approximation and it needs subtractions 

for renormalization parts containing the rightmost vertex. But there are 

no such renormalization parts. A suspect renormalization part shown 

in Fig. 49 is not a renormalization part because the leftmost vertex on 

the ghost line within this subdiagram must be a EcA vertex and it 
P 

contains a factor of external momentum qp (external to this subdiagram). 

dK 
Thus this subdiagram has D=-l . Furthermore 3 is 

6 xj 
*x=x=() 
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it se1 f not a renormalization part [ 1 D=-l and hence it becomes finite 

in n-loop approximation once the counterterms are chosen up to (n-l) 

1 oop approximation. Similar discussion goes through for higher 

derivatives of Kn i and also for En i @, x, x [ -1. 
(V-5) Proof of Renormalizability: 

Here we shall deal only with the new renormalization part, the 

j14JAp vertex. The discussion for the remaining renormalization parts 

proceeds parallel to the discussion in Sec. II -6 and will not be repeated 

here. 

We assume that renormalization constants and mass counterterm 

have been chosen up to (n-l) loop approximation making all the proper 

vertices finite up to (n-1) loop approximation. We assume that proper 

choice of z n’ wn’ 
?. 

n,‘x(n)’ 
(6 m) n 

has been made making the photon, 

the ghost and the electron propagators finite to n-loop approximation. 

We shall show that it is possible to make EcA vertex finite with 
P 

appropriate choices of x 
n 

and that we may choose xn=( z ) if we 
x n 

have chosen xr = ( z~)~; 05 r%n-1; yielding the usual Ward identity. 

Differentiate the WT identity of Eq. (70) with respect to x, and 

‘n 
and set C=x=z=O . We get: 
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Equating the n-loop divergence on both sides, 

= finite. (73) 

Since, 
[i$ *o=xzJ;= O = gin *ozxzz]::‘ etc.1 * 

It is clear from Eq. (73) that if we choose xn such that 

= finite (74) 

we will have 

div 

= finite . 

n 

Further, if we have chosen xr = (z ) , Osrsn-l , then Eq. (74) xr 
gives: 

Div (x,) = Div (z ) [ 1 . xn 
and we may choose the finite part of xn such that x = (2 ) . 

n Xn 

VI: A COMPLEX SCALAR FIELD INTERACTING 
WITH ELECTROMAGNETIC FIELD: 

In this section we shall discuss the renormalization of a complex 

scalar field interacting with electromagnetic field when the gauge 
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condition chosen is bilinear. We shall consider only the unbroken version 

of the theory (CL:,, ’ 0) 

The Lagrangian in terms of unrenormalized fields is: 

y= I(ap-ie AJ$I 2 - p2$*$ + i(q5*-$j2 - a FCLyFFY (75) 

A??, is mvariant under the electromagnetic gauge transformation: 

AJx) -+A,+ - i $4x) ; 4(x) + eeiw (x)$(x) , d”(x) - eiw (x)q5*(x) . 

We shall show the following: 

(i) With a simple counter example, we shall show that if we choose 

the previous gauge function f A [ ] = --& (“,A’ - +EA2) , it is not possible 

to make proper vertices finite by renormalization on fields and parameters 

E, e, (Y, p2 and A . 

(ii) However, that, if we choose the gauge function f ‘= 

+ ‘apAP - 
* 

$ EA2 - in4 q4) and renormalize parameter I) independently, 
a 

all the proper vertices can be made finite. 

(VI-i) The Gauge Function f = -+ ( apA”- $EA2) 
(Y 

Since this discussion is similar to that in Sec. V, we shall be 

brief. 

Let us introduce two sources Ka(a=l or 2; xa) corresponding to 

fields oa fdi z 6”(x) , $2 E 4(x)]. The generating functional of the 

Green’s functions is given by: 
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W[J,K] = {[dAid$adcdE ]ExP i]xff[Aia4a’c,E ]+ JiAiiKa~aI 

Z[J,K] 5 -ilnW[J,K]. 

As before, we define expectation values Q a for field @a in 

presence of external sources by, 

‘l& = 6Z[J,K]/6Ka . 

We note that under an infinitesimal gauge transformation, 

(77) Ai+A. -1 aPw 
1 elf3 ; 4a 

LZb : 6 4(xa-xbN 4(xn-xa) Lab ; 5,, = -5,, = 1 ; L,, = 5,, =o. 3 

Following the derivation of WT identity, we obtain the following 

WT identity for F[ @, Q] : 

G,.[ark- e i&&6p,- ipcaG,,:@) g 

= _- ’ a? m. - $ cG(Diaj + iAij) 
i a 11 i 

where, P :- 6 2z 
ca 6 Kc6 Ka 

= propagator of $ field. . 1 
(78) 

To exhibit the difficulty, let us consider Eq. (78) up to one loop 

approximation. Since there are no basic (Fc$) vertices, the term 

ieP 
6 G&f 

G - 
ca 05 haa 

c:c contains at least two loops and hence will be dropped 

in this consideration. 
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Introduce the renormalization transformation identical to those of 

Sec. (11-4); in addition to the renormalization of e and the scalar field. 

IpI= z$ lp’ ; e=e XZ 
-1 

ICI 
z-+ . 

r (79) 

Then expressing Eq. (80) to one loop approximation, [in terms of 

renormalized quantities, dropping superscript (r)] , 

GP@ 
a? 6r eXgP ~61‘ -_ 
1 6rni zG dc c 6ed I 

= . (80) 

Let us write Z = l+z , W = Z+w , etc., etc. 

Suppose, we have chosen a, w, 6~ 2 , z 
4 

‘i to make the photon, 

scalar and ghost propagators finite to one loop approximation. Then we 

shall show that charge renormalization alone cannot remove the divergence 
:: 

in (4 c$A~) vertex. Essentially, this happens because the ($“,#,Au) vertex 

in one loop approximation has a divergence proportional to photon 

momentum in addition to the divergence of the form of the bare vertex. 

Differentiating Eq. (80) with respect to Qa and “, and setting 

@ = 0 = @ (the vacuum expectation values), we obtain: 

P 6 2r 
“de dlI,&Q 

a d 1 
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Let us choose a = 1, e = 2 in Eq. (81). 

Remembering that the propagators are made finite to one loop 

approximation, we may equate the divergence on both sides of Eq. (81) 

in one loop approximation: 

div 

1 1 
div 

+ finite . 

1 

Let us define: 

F.T.{6aii:c 1 = i rf)b;%r) 

Then kF)(p;q, r)iT = (q+r)pb(e) + (q-r)CI c(e) 

F. T. 
2 2 

=r -p ; 

F.T. = q2 - p2 . 

62A.. 
div 

F.T. c”. ‘J 
I I 

‘J 6Qa,6 * 5 Z(E) . 

e 1 

Then Eq. (82) becomes, 

b(e) 4 + C(E) _ e(x-z Z(E) + finite. 
(q+r) 

(82) 

(83) 
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Thus, we can make c(e) finite be choosing x = z + finite, Also, 
X 

b(e) = & Z(E) + finite . 

An explicit calculation of Z(E) shows that it is divergent. Hence, 

:‘- 
it follows that the 4 $A 

P 
vertex will necessarily contain divergence. 

I 
We show the graphs contributing to E(E) in Fig. 20. I 

We may express this in another way. We saw inEq. (83) that a 

derivative of ,A~~,~ viz. 6$G ho 

I 

contained (nonrenormalizable) 

*=o 

divergence and by virtue of WT identity, there must be divergence in its 

left hand side which must come from a proper vertex. The reason why 

TL 1 @ ?Ir cannot be made finite as against the previous two cases is that 

the derivatives of CF. Q] at @ = @= 0 need additional internal 

subtractions, (in addition to those shown in Fig. 8. See discussion of 

Sec. 11-5). For example, we may consider Ap(p) defined in Fig. 7. 

The additional subtractions needed are shown in Fig. 21 (a,b). Clearly 

these subtractions cannot be expressed as (divergent constant) XAcL(p); 

unlike the subtractions in Fig. 8. These are rather generated out of 

derivatives of a loop consisting of a scalar propagator. See Fig. 21(c). 

This suggests that we modify the gauge functional to f 

*CA2 - in&$] . Then we may be able to make f 

iP . 1 finite. 
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(VI-2) The Gauge Condition f ’ = &[$Al* - +cA’- $&] . 

Let us choose the gauge functional 

a&- +5",AiAj - f$ ab ‘a’b} ’ (84) 

In this section, we shall use hermitian fields. 

:: * 
(jl =$!L “2 =* 

(Y 
so that vab = 6 4(xa-xa) 6 4Pa-xb) ‘lab ; Ti = ‘722 = i ; rlt2 = ‘lLi = o] 

Since the last term is gauge invariant, M 
4 

of Eq. (5) 1s unchanged; 

i.e., the ghost Feynman rules are unchanged. The Feynman rules for 

* * 2 
” 4 6Ap 2 (6 4) and ($‘bA2) vertices are changed. .-I[@, a] is still 

given by the same formal expression of Eq. (14). The new WT identlty 

of l?[@,Q] is, 

G~,Ia~~-e~~cjo~~-iPceG~i~)~] 

(85) 

[ci2= -5,, = 1 > Lil = 5,, = o] * 

We define renormalized fields, parameters and renormalization 

constants by 
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Q = &Q((‘) 
a G a 

(86) 

in addition to those defined in Sec. (11-4). 

Expressing WT identity in terms of renormalized quantities(and 

dropping the suffix (r) ), 

x0 +eF5 
Ic1 

ac 6,@Qc - i P (, 

= - $F[a, a] 

where, 

- +WEc (gbT + i Pbc) . 

We define: 

(87) 

(88) 

(89) 
6G;a 

L”, = e -$ 5EbQ$, - i Lzc PceGoS r 
L 

. 
li, 

Then the WT identity reads: 

e 

GPa [ 
a? ” , F +]= -$?$Q] (90a) 

i. e. , 
1 
a? 6r 1 F+L; +I= -;cb>+;; . (9Ob) 

The second term in Li [Eq. (89)] is identical in form to 

K [Q,x,x] of Sec. (V-3) and has the same diagrammatic representation 

(See Fig. 17). 
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We shall see that, like the general linear gauge (discussed in 

Ref. 2), the scalar field develops a vacuum expectation value even though 

t(,, ’ 0 . 

Consider the WT identity of Eq. (90a) for Qi = 0 , Qa = ua , 

where u are real constants. 
a 

Let va be the vacuum expectation value 

of fba * In vacuum, 

6r -0; 6@ dr_o . 
a 6 ai (91) 

vat. 
6r 

Here, the meaning of - 6 ai 
q 0 should be carefully noted. 

vat 

For @ = 0 , “, = ua ; g has, in momentum space, the form, 
I 

= pp J(p” L/u:+us)lp+o and thus it is zero for any 

a 
ot true that J(p2, %)I, _ o is zero for any 

U a ’ 
In vacuum, J(p”, q)= 0 ; so that 

F. T. 

I I 

G aP6r 
pa 16C 1 m=o 

- 2 Qp’J(pz v2)[p+0 

= J(P~,~) Ip o is zero too. 1 . 

Hence from Eq. (90a) we obtain that va satisfies: 

Lfy* = [ o,ea=v =o . a 1 (92) 
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v 
a 

is, in general, nonzero and e-dependent. ( i. e., infinite in 

the limit e+O). va Is are to be determined from solutions of 

br 
F =o ( 

%=” a’ m-0 
(93) 

We, then, define the shifted fields Qa ’ bYa 
. 

and make this substitution in the effective action. The proper vertices 

of the theory are obtained by expanding P ai, \Ir 
[ iI 

around ai = 0, 
, 

Qa = 0 . 
c 

We note that as a result of the substitution aa = ea + v in the 
a 

effective Lagrangian, there are new vertices ($‘A@, $‘A2, $“, 4’) 

created in higher orders. All these vertices have dimensions three or 

lower. 

We note that the presence of these vertices do not create any new 

renormalization subdiagrams in G -‘[@,a *] , L[@,Q*] andka[@,QO], 

of the kind that would need further internal subtractions ( i. e., subtractions 

not taken care of by renormalization counter-terms - See the discussion 

of Sec. II-5 and Sec. V-4) . This follows because, as mentioned earlier 

such renormalization parts have D = 0 at most, and inclusion of any 

of the new vertices lower D by one. 

The presence of these vertices creates new renormalization parts 

in derivatives of I?[,**] andyiF,**] , theyare:$:i, *,*%zrn, , 
I a a 1 J 
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b3r by 
. (y . We need to show that these become finite with others. 6 Q;b Lip”,’ ’ 6 a; 

h2<’ 

6rnib q’ 
and 6s are not renormalization parts. 

a c=O=Q’ a QFO=@’ a a 

Taking these facts into account, we can carry out the analysis of 

divergences in G -$ [ 0, *i] , Lz [a, *i] andFi[@, q;] analogous to 

that in sections (11-5) and (V-4). In the discussion forsl p, a-1 , we 

only need to remember the presence of additional subtractions needed 

which are shown in Fig. 21. Qualitatively, the result is the same, 

namely, with appropriate choices of W, Y and V in each loop 

approximation, 
b Q. 

l QrO=\Ir’ 
’ bQ;b*‘5 

a 

, 
of r0 can be made finite. 

b2< 

6 y5 “;I 

and higher derivatives 

Go=* 
a 

also becomes finite, since 

P=o=cv 
a 

it is not a renormalization part. This, however, does not apply to 

63 
6 9; 

. Also, derivatives of Lz [@> a*] become finite in n-loop 

a=O=Q’ 
a 

approximation once the counter terms up to (n-1) loop approximation 

are chosen to make .[,,**I and G[@,*‘] finite. Lz[ *O=q;]may 

contain divergence, which in momentum space, is independent of external 

momentum. 

To prove renormalizability, let us assume that the counter terms 
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chosen up to (n-l) loop approximation, and the choice of v up to (n-1) 

loop approximation make derivatives of 

Lz[@, Q:] andk[Q, *&-I around G=w;= o finite. Then we have to show 

that we can choose the counter terms to n loop approximation (and 

determine v to n-loop approximation) which will make the derivatives 

of P~~*~]~ G,;[~,Q:]. Lz[Q,*i]andFI[Q,@;] finite in n-loop 

approximation. 

Let us choose z 
(n)’ ‘n 

so as to make the transverse part of the 

photon propagator and ghost propagator finite in n-loop approximation. 

Let us further choose divergent parts of w 
(n) ’ ‘(n) and VW So as to 

69 
make --% 

6 Qi I and 
6 2r; 

6 a=O=Q’ ’ 6ai6Qj I @=o=w 56 QbO 

a 
a=o=*. 

a a 

finite in n-loop approximation. 

Ditferentiate Eq. (90b) with respect to G;, and set @J~=o=@‘, . 

+Lp 62r z-2.,$- 1 b--% 
a 6Q;6*’ (I apq . b 

(94) 

In momentum space, the right hand side and the first term on the 

left hand side are proportional to p2 . Since 62r 
does not have 

a zero in p2 (for any a and b) it follows that 

and in particular bE(p”)] ziv are proportional to p2. [This can be 

seen more easily if one performs a global U(i) transformation on 
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such that only one of them has a vacuum expectation value = 

But since [l.:(p2)1 zi” must be a constant independent of p2, 

it must be finite. 

Differentiate Eq. (90b) with respect to Qj and set @=O=‘y, 

. 
aP 6 2r 

1 6ai6 @. 
+LP b2r 

J 
a 6 @;6 Q. 

;-;f$iG-’ . 
J J 

4 
(95) 

We equate the n-loop divergence on both sides of Eq. (95) in 

momentum space, noting 

[6$ Qj]o = 0 , [Gailn = finite , [ %] = finite , 

n 

we obtain: 

pl* [rpv(pi]~v = finite. 

Hence the longitudinal part of the photon propagator is also finite. Further, 

since Lp(p2) and G-‘(p2) are proportional to p2, we find, from Eq (95) . I a 

Pprp, = P’P” . 

Hence, the photon mass is zero. 

Henceforth, let us use a compact notation for derivatives of F, G, 

L, Y;, for convenience. The letters a, b, c, . . . will be used for the 

scalar fields, letters i, j,. . . will be used for the photon field. Thus 

62r bL@ 

raj ’ 6QJ6 Q; 
etc, etc. 

@=O=Q a=O=~’ 
a a 
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Differentiate the WT identity of Eq. (90b) with respect to ‘$,’ and 

Qj and set Q’ =O=@ . 

aPr ..+Lpr 
1 blJ .+Lp 

a abJ a, jrab 
P +L r. 
a,b q 

= -G ;; ir; bj -ix bG”;,j -&f jG;; b . (96) 
I > 

Now, Lp, j , L”,,, ,rI,bj and Gii,b are not renormalization 

parts and br],‘= kt, i] o = [g, b]O = kaj], = o . Hence, equating the 

n-loop divergence on both sides of Eq. (96), we get 

(97) 

We define: 

Jp,q. r) F.T. = I-" rca)m . 

Then, using L”,, c 1 = Gab , Eq. (97) yields: 
0 

div div 
PcI (98) 

n n * 

Since, 
div 

x (divergent constant) , 
n = PpLy 

It follows from Eq. (98) that 

[rEv(p, q, r)]I” = finite 

[ 1 
div 

e ‘ab ra(r) = 
n 

(99) 
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while Eq. (94) gives: 

rZ[rb(r)]zv= - i c[yh, br>t finite . (100) 

Equation (99) and Eq. (100) imply: 

, 
c 1 

div 
= finite ; ya b = finite . 

’ n 
(101) 

Differentiate Eq. (98) with respect to a;, , ‘Z’, and set @=O=Q’ : 

t rbci ’ Lt rabc ’ ‘“,, brat + ‘!, crab 

= -+;;r; bc - +,;,br; c -ix ,G,,:,. (10% 

Equating the n-loop divergence on both sides of Eq. (102). 

(103) 

Choose b = 1, c = 2 
[ 
c,, = -l$, = 1 1 . In this case, we express 

Eq. (103) in momentum space using: 

iI’: (p;q, r) E F. T. I? ( bci} = +i [IA(qWp + B(q-r)d 

F.T. rat [ 1 div 
= rz(CZ+Z,& + (Dz- dn) 

F. T. pab]f = q2@l+z+(n)) + (D1- d(,)) 
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F.T. Fab [ 1 = &P2) 
0 

F.T. Fat [ 1 2 2 
=r-p . 

0 

Then we obtain: 

A(q+r)’ t B(q’-r2) + e 
‘l+‘+(n)) 

(q2-r2) + (D2-Df) = finite . (104) 

Hence, it follows that: 

A = finite 

Dl = D2 + finite (405) 

Cl = C2 + finite . (1’36) 

From Eq. (105) and Eq. (106). it follows that a mass renormalization 

term and a wave function renormalization term of the form -6~n($~+$~) 

and +a 
$(n) (al*‘lap~l+a~m2$L~2) respectively, will re move divergences in 

the propagators for 6; and 4; fields with the choices 

2 
“(n) 

= Df + finite , c1 = -zn + finite . 

Once this is done, Eq. (104) yields: 

B = e(X/Z+)n + finite . 

Hence the choice of xn 

[ 
rzb(p, 9.1‘) 1 

such that (X/Z+1 = finite will make 

n finite. In particular, if we have chosen xr = z 
Wr) 

(0 s r 2 n-l), then we may choose xn = z 
W-d * 
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Now, choose b=c=l in Eq. (103). We write: 

r~c(P, q, r) 
div 

n 
= E(q+r)p + F(q-r) 

P 

= r2G + H [ a=2, c=l ] etc. 

Then, we obtain: 

E(q+r)’ + F(q’-r2) = eG(r2+q2) + 2He + finite 

Therefore, it is clear that E, F, G and H are finite. 

Finally, we differentiate Eq. (90b) with respect to *; , WC and 

Q> and set @=O=Q’ . We equate the n-loop divergence on both sides. 

We obtain: 

5 ab II 1 racd div 
n 

+ permutations = finite . (107) 

choosing b = c = d = 1 in Eq. (107), we obtain, 

= finite . (4’38) 

Choosing b = c = d = 2 in Eq. (107),we obtain, 

div 
= finite . 

n (iO9) 

Choosing b = 2, c = d = 1 in Eq. (107) and using Eqs. (108) and (fO9), 

we find 

E 1 r div 
111 n = finite . 

Choosing b = 1, c = d = 2, we get 

[ 1 r222 n 
div = finite . 
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Thus we have shown that symmetric mass and wavefunction 

renormalization counter terms remove divergences in the propagators of 

4; and 4; . We have also shown that all the newly introduced 

renormalization parts become finite in n-loop approximation. The rest 

of the proof (4-point functions and etc. ) is trivial and hence will not be 

given here. 
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Feynman rules ~ 

Diagrammatic representation for the last term in 

Eq. (14). 

Diagrammatic representation for G -f(P). 
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Diagrammatic representation for G (3) (P, q; r p) . 

Subdiagrams of y1 needing subtraction. 

Derivatives of z[Q] which are renormalization parts. 

Subtractions needed for Ap(p), q IJ.“(q, r), IIpV(q, r). 

Left hand side of Eq. (32). 

One loop diagrams for the inverse photon propagator. 

One loop diagrams for the inverse ghost propagator. 

One loop diagrams for the ghost ghost photon vertex. 

One loop diagrams for the (Ap)4 vertex. 

One loop diagrams for the (API3 vertex. 

Diagrammatic representation for Eq. (56). 

Diagrammatic representation for 

62X 
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Diagrammatic represetiation for Kti[ a, x , si ] . 
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Fig. 20 

Fig. 21 
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Diagrammatic representationfor 

A suspect renormalization part of diagram in Fig. 18. 

Diagrammdic representation of C’ . 

Additional subtractions needed for All(p) . 
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